Исходный текст

Результат частотного анализа введенного текста

Частотный анализ – это один из методов криптоанализа, основывающийся на предположении о существовании нетривиального статистического распределения отдельных символов и их последовательностей как в открытом тексте, так и шифрованном тексте, которое с точностью до замены символов будет сохраняться в процессе шифрования и дешифрования.

Кратко говоря, частотный анализ предполагает, что частота появления заданной буквы алфавита в достаточно длинных текстах одна и та же для разных текстов одного языка. При этом в случае моноалфавитного шифрования, если в шифрованном тексте будет символ с аналогичной вероятностью появления, то можно предположить, что он и является указанной зашифрованной буквой. Аналогичные рассуждения применяются к биграммам (двубуквенным последовательностям), триграммам в случае полиалфавитных шифров.

Метод частотного анализа известен с еще IX-го века и связан и именем Ал-Кинди. Но наиболее известным случаем применения такого анализа является дешифровка египетских иероглифов Ж.-Ф. Шампольоном в 1822 году.

Данный вид анализа основывается на том, что текст состоит из слов, а слова из букв. Количество различных букв в каждом языке ограничено и буквы могут быть просто перечислены. Важными характеристиками текста являются повторяемость букв, пар букв (биграмм) и вообще m-ок (m-грамм), сочетаемость букв друг с другом, чередование гласных и согласных и некоторые другие.

Идея состоит в подсчете чисел вхождений каждой nm возможных m-грамм в достаточно длинных открытых текстах T=t1t2…tl, составленных из букв алфавита {a1, a2, ..., an}. При этом просматриваются подряд идущие m-граммы текста:

t1t2...tm, t2t3... tm+1, ..., ti-m+1tl-m+2...tl.

Если – число появлений m-граммы ai1ai2...aim в тексте T, а L – общее число подсчитанных m-грамм, то опыт показывает, что при достаточно больших L частоты

для данной m-граммы мало отличаются друг от друга.

В силу этого, относительную частоту считают приближением вероятности P (ai1ai2...aim) появления данной m-граммы в случайно выбранном месте текста (такой подход принят при статистическом определении вероятности).

В представленной ниже таблице приводятся частоты встречаемости букв в русском языке (в процентах):

 

Буква алфавита Показатель частоты встречаемости Буква алфавита Показатель частоты встречаемости
А 0,062 Р 0,04
В 0,038 Т 0,053
Д 0,025 Ф 0,002
Ж 0,007 Ц 0,004
И 0,062 Ш 0,006
К 0,028 Ъ, Ь 0,014
М 0,026 Э 0,003
О 0,09 Я 0,018

 

 

 

Имеется мнемоническое правило запоминания десяти наиболее частых букв русского алфавита. Эти буквы составляют слово СЕНОВАЛИТР.

Устойчивыми являются также частотные характеристики биграмм, триграмм и четырехграмм осмысленных текстов. Существуют специальные таблицы с указанием частоты биграмм некоторых алфавитов. По результатам исследований с помощью таких таблиц ученые определили наиболее часто встречаемые биграммы и триграммы для русского алфавита:

СТ, НО, ЕН, ТО, НА, ОВ, НИ, РА, ВО, КО, СТО, ЕНО, НОВ, ТОВ, ОВО, ОВА.

Из таблиц биграмм можно также легко извлечь информацию о сочетаемости букв, т.е. о предпочтительных связях букв друг с другом.

Результатом таких исследований является таблица, в которой слева и справа от каждой буквы расположены наиболее предпочтительные «соседи» (в порядке убывания частоты соответствующих биграмм). В таких таблицах обычно указывается также доля гласных и согласных букв (в процентах), предшествующих (или следующих за) данной букве.

 

Г С Слева   Справа Г С
3 97 л, д, к, т, в, р, н А л, н, с, т, р, в, к, м 12 88
80 20 я, е, у, и, а, о Б о, ы, е, а, р, у 81 19
68 32 я, т, а, е, и, о В о, а, и, ы, с, н, л, р 60 40
78 22 р, у, а, и, е, о Г о, а, р, л, и, в 69 31
72 28 р, я, у, а, и, е, о Д е, а, и, о, н, у, р, в 68 32
19 81 м, и, л, д, т, р, н Е н, т, р, с, л, в, м, и 12 88
83 17 р, е, и, а, у, о Ж е, и, д, а, н 71 29
89 11 о, е, а, и З а, н, в, о, м, д 51 49
27 73 р, т, м, и, о, л, н И с, н, в, и, е, м, к, з 25 75
55 45 ь, в, е, о, а, и, с К о, а, и, р, у, т, л, е 73 27
77 23 г, в, ы, и, е, о, а Л и, е, о, а, ь, я, ю, у 75 25
80 20 я, ы, а, и, е, о М и, е, о, у, а, н, п, ы 73 27
55 45 д, ь, н, о Н о, а, и, е, ы, н, у 80 20
11 89 р, п, к, в, т, н О в, с, т, р, и, д, н, м 15 85
65 35 в, с, у, а, и, е, о П о, р, е, а, у, и, л 68 32
55 45 и, к, т, а, п, о, е Р а, е, о, и, у, я, ы, н 80 20
69 31 с, т, в, а, е, и, о С т, к, о, я, е, ь, с, н 32 68
57 43 ч, у, и, а, е, о, с Т о, а, е, и, ь, в, р, с 63 37
15 85 п, т, к, д, н, м, р У т, п, с, д, н, ю, ж 16 84
70 30 н, а, е, о, и Ф и, е, о, а, е, о, а 81 19
90 10 у, е, о, а, ы, и Х о, и, с, н, в, п, р 43 57
69 31 е, ю, н, а, и Ц и, е, а, ы 93 7
82 18 е, а, у, и, о Ч е, и, т, н 66 34
67 33 ь, у, ы, е, о, а, и, в Ш е, и, н, а, о, л 68 32
84 16 е, б, а, я, ю Щ е, и, а 97 3
0 100 м, р, т, с, б, в, н Ы л, х, е, м, и, в, с, н 56 44
0 100 н, с, т, л Ь н, к, в, п, с, е, о, и 24 76
14 86 с, ы, м, л, д, т,, р, н Э н, т, р, с, к 0 100
58 42 ь, о, а, и, л, у Ю д, т, щ, ц, н, п 11 89
43 57 о, н, р, л, а, и, с Я в, с, т, п, д, к, м, л 16 84

 

Пример: Проведем анализ текста следующего содержания

"СОКРАТ из Афин (469–399 до н.э.) – знаменитый античный философ, учитель Платона, воплощенный идеал истинного мудреца в исторической памяти человечества. С именем Сократа связано первое фундаментальное деление истории античной философии на до- и после-Сократовскую («Досократики»), отражающее интерес ранних философов VI–V вв. к натурфилософии, а последующего поколения софистов V в. – к этико-политическим темам, главная из которых – воспитание добродетельного человека и гражданина. Сократу был близок софистическому движению. Учение Сократа было устным; все свободное время он проводил в беседах с приезжими софистами и местными гражданами, политиками и обывателями, друзьями и незнакомыми на темы, ставшими традиционными для софистической практики: что есть добро и что – зло, что прекрасно, а что безобразно, что добродетель и что порок, можно ли научиться быть хорошим и как приобретается знание. Об этих беседах мы знаем в основном благодаря ученикам Сократа – Ксенофонту и Платону. Кроме их сочинений, имеются также фрагменты и свидетельства о содержании «сократических диалогов» других сократиков, пародийное изображение Сократа в комедии Аристофана Облака и ряд замечаний о Сократе у Аристотеля. Проблема достоверности изображения личности Сократа в сохранившихся произведениях – ключевой вопрос всех исследований о нем."

Пишем 

в поле ввода этот текст и получаем ответ

Проведен анализ текста

 

Количество символов в тексте 1329
Количество пробелов 179
Количество цифр 6
Количество точек и запятых 25
Количество английских букв 4
Количество русских букв 1094
 
Посимвольная статистика и частотный анализ 
Символ   встречается 179 раз. Частота 13.47%
Символ о встречается 130 раз. Частота 9.78%
Символ и встречается 117 раз. Частота 8.80%
Символ а встречается 88 раз. Частота 6.62%
Символ е встречается 86 раз. Частота 6.47%
Символ с встречается 70 раз. Частота 5.27%
Символ н встречается 70 раз. Частота 5.27%
Символ т встречается 70 раз. Частота 5.27%
Символ р встречается 55 раз. Частота 4.14%
Символ к встречается 42 раз. Частота 3.16%
Символ л встречается 38 раз. Частота 2.86%
Символ в встречается 38 раз. Частота 2.86%
Символ м встречается 38 раз. Частота 2.86%
Символ д встречается 34 раз. Частота 2.56%
Символ ч встречается 24 раз. Частота 1.81%
Символ п встречается 21 раз. Частота 1.58%
Символ б встречается 20 раз. Частота 1.50%
Символ з встречается 17 раз. Частота 1.28%
Символ ф встречается 17 раз. Частота 1.28%
Символ я встречается 17 раз. Частота 1.28%
Символ у встречается 17 раз. Частота 1.28%
Символ ы встречается 15 раз. Частота 1.13%
Символ , встречается 14 раз. Частота 1.05%
Символ х встречается 13 раз. Частота 0.98%
Символ . встречается 11 раз. Частота 0.83%
Символ й встречается 11 раз. Частота 0.83%
Символ ж встречается 10 раз. Частота 0.75%
Символ г встречается 10 раз. Частота 0.75%
Символ ь встречается 9 раз. Частота 0.68%
Символ – встречается 8 раз. Частота 0.60%
Символ ю встречается 6 раз. Частота 0.45%
Символ v встречается 3 раз. Частота 0.23%
Символ - встречается 3 раз. Частота 0.23%
Символ 9 встречается 3 раз. Частота 0.23%
Символ щ встречается 3 раз. Частота 0.23%
Символ э встречается 3 раз. Частота 0.23%
Символ ш встречается 3 раз. Частота 0.23%
Символ » встречается 2 раз. Частота 0.15%
Символ ( встречается 2 раз. Частота 0.15%
Символ ц встречается 2 раз. Частота 0.15%
Символ « встречается 2 раз. Частота 0.15%
Символ ) встречается 2 раз. Частота 0.15%
Символ 3 встречается 1 раз. Частота 0.08%
Символ : встречается 1 раз. Частота 0.08%
Символ ; встречается 1 раз. Частота 0.08%
Символ i встречается 1 раз. Частота 0.08%
Символ 4 встречается 1 раз. Частота 0.08%
Символ 6 встречается 1 раз. Частота 0.08%

Copyright © 2024 AbakBot-online calculators. All Right Reserved. Author by Dmitry Varlamov