Коэффициенты окружности
Точка на окружности, через которую надо провести касательную
Общая формула окружности Уравнение касательной в указанной точке
Касательная к окружности
Если не использовать понятие производной, и взять объяснение из учебников середины прошлого века, то "Касательная к окружности - это прямая пересекающая окружность в двух совпадающих точках"
Окружность на плоскости может быть представлена в виде нескольких исходных данных
1. В виде координат центра окружности (x0,y0) и её радиуса R.
2. В виде общего уравнения
В виде параметрического вида и в полярных координатах мы рассматривать не будем, так как там формулы тоже на базируются на координатах центра окружности и радиусе.
Наша задача, зная параметры окружности и точку принадлежащую этой окружности вычислить параметры касательной к этой окружности.
Эта задача, является частным решением более общего калькулятор касательная к кривой второго порядка
Итак, если окружность выражена формулой
Уравнение касательной к окружности если нам известны параметры общего уравнения таково:
Таким образом, зная все коэффициенты, мы очень легко найдем уравнение касательной в заданной точке.
ВАЖНО: При указании точки, она должна быть обязательно(!!) принадлежать окружности,
и не быть точкой в какой либо стороне. В противном случае, уравнение касательной будет неверным.
Примеры
Вычислить уравнение касательной в точке (13.8, 0) к окружности выраженной формулой
Общая формула окружности |
Уравнение касательной в указанной точке |
Раз у нас заданы радиус и коордианты центтра то уравнение имеет вид
раскроем скобки, получим
Общая формула окружности |
Уравнение касательной в указанной точке |
Отрисовав, полученные линии в GeoGebra мы убедимся что расчет произведен верно.
Формально, используя вышеупомянутую программу, касательную можно провести там проще и быстрее. Смотрите где и как проще.
Удачных расчетов!
|